

Name

Class

www.MathsTeacherHub.com

Vectors

(9 – 1) Topic booklet

Higher

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - *there may be more space than you need.*
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must **show all your working out**.
- If the question is a **1H** question you are not allowed to use a calculator.
- If the question is a **2H** or a **3H** question, you may use a calculator to help you answer.

Information

- The marks for **each** question are shown in brackets
 - *use this as a guide as to how much time to spend on each question.*

Advice

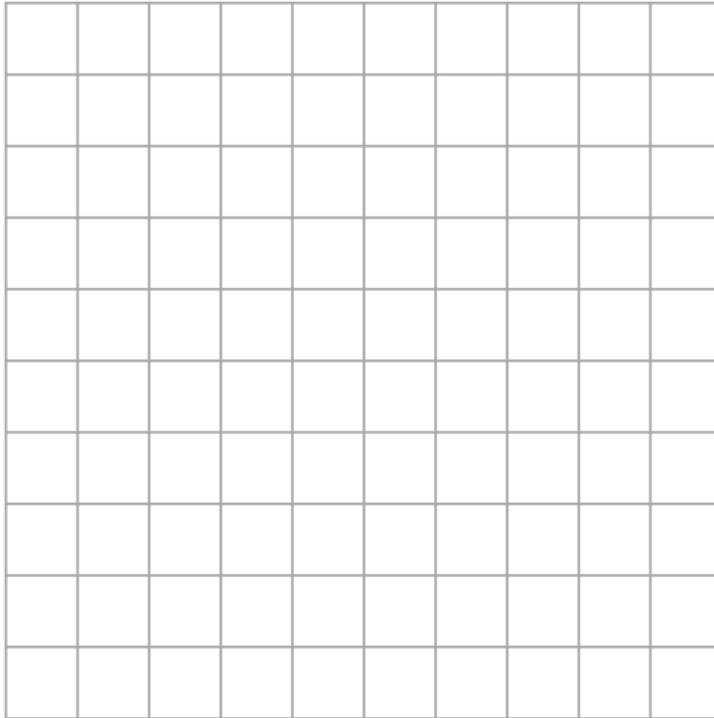
- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions
Write your answers in the space provided.
You must write down all the stages in your working.

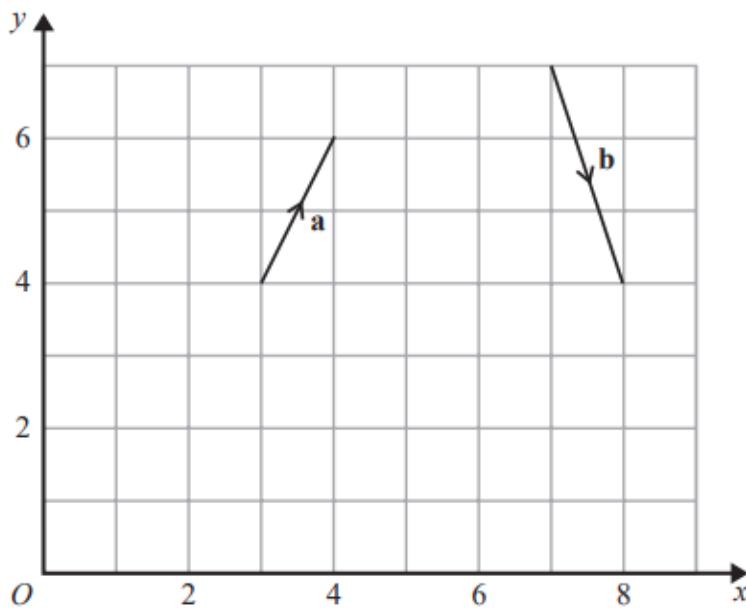
$$6 \quad \mathbf{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$$

Find $2\mathbf{a} - 3\mathbf{b}$ as a column vector.

$$\begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$$


November 2020 – Paper 2H

(Total for Question 6 is 2 marks)


$$8 \quad \mathbf{a} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$$

On the grid below, draw and label the vector $2\mathbf{a} + \mathbf{b}$

10 The vector **a** and the vector **b** are shown on the grid.

(a) On the grid, draw and label vector $-2\mathbf{a}$

(1)

(b) Work out $\mathbf{a} + 2\mathbf{b}$ as a column vector.

$$\begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$$

(2)

13 **a** and **b** are vectors such that

$$\mathbf{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} \quad \text{and} \quad 3\mathbf{a} - 2\mathbf{b} = \begin{pmatrix} 8 \\ -17 \end{pmatrix}$$

Find **b** as a column vector.

$$\begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$$

15 A, B and C are three points such that

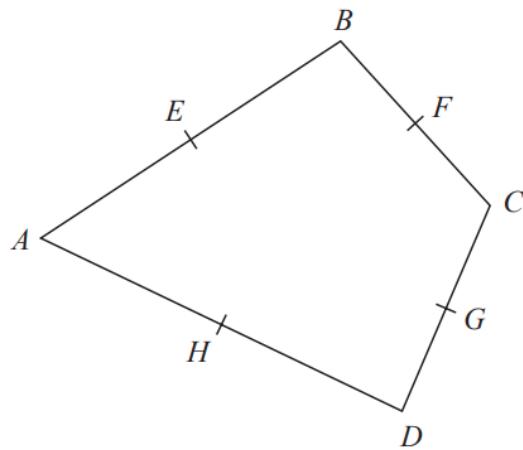
$$\overrightarrow{AB} = 3\mathbf{a} + 4\mathbf{b}$$

$$\overrightarrow{AC} = 15\mathbf{a} + 20\mathbf{b}$$

(a) Prove that A, B and C lie on a straight line.

(2)

D, E and F are three points on a straight line such that

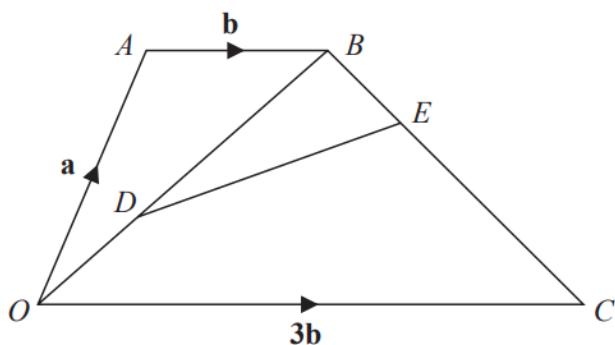

$$\overrightarrow{DE} = 3\mathbf{e} + 6\mathbf{f}$$

$$\overrightarrow{EF} = -10.5\mathbf{e} - 21\mathbf{f}$$

(b) Find the ratio

length of DF : length of DE

(3)


$ABCD$ is a quadrilateral.

E, F, G and H are the midpoints of AB, BC, CD and DA .

$$\overrightarrow{AH} = \mathbf{a} \quad \overrightarrow{AE} = \mathbf{b} \quad \overrightarrow{DG} = \mathbf{c}$$

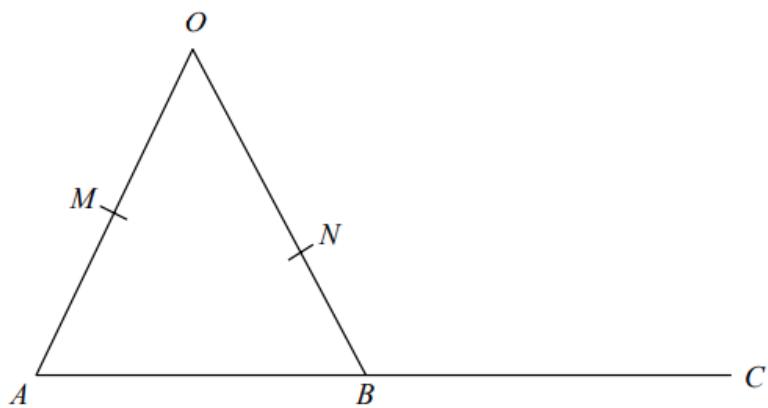
Prove, using vectors, that $EFGH$ is a parallelogram.

18 $OABC$ is a trapezium.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overrightarrow{AB} = \mathbf{b}$$

$$\overrightarrow{OC} = 3\mathbf{b}$$


D is the point on OB such that $OD:DB = 2:3$

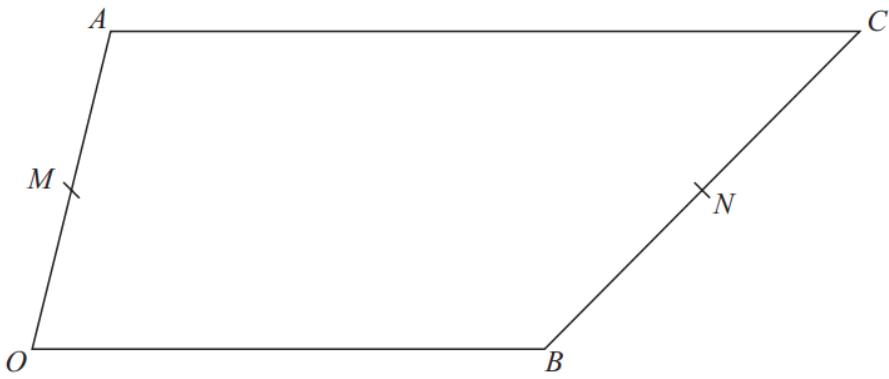
E is the point on BC such that $BE:EC = 1:4$

Work out the vector \overrightarrow{DE} in terms of \mathbf{a} and \mathbf{b} .

Give your answer in its simplest form.

18

OMA , ONB and ABC are straight lines.


M is the midpoint of OA .

B is the midpoint of AC .

$\vec{OA} = 6\mathbf{a}$ $\vec{OB} = 6\mathbf{b}$ $\vec{ON} = k\mathbf{b}$ where k is a scalar quantity.

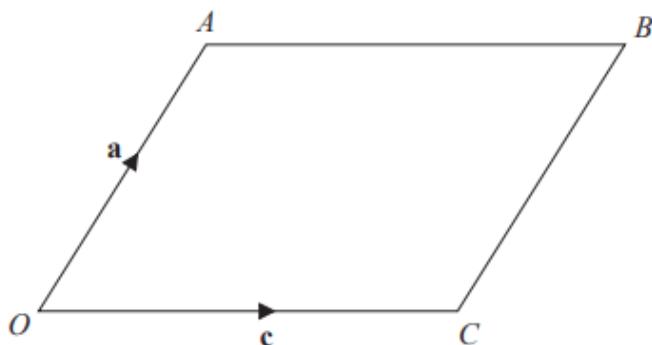
Given that MNC is a straight line, find the value of k .

19 The diagram shows quadrilateral $OACB$.

M is the midpoint of OA .

N is the point on BC such that $BN:NC = 4:5$

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b} \quad \overrightarrow{AC} = k\mathbf{b} \text{ where } k \text{ is a positive integer.}$$


(a) Express \overrightarrow{MN} in terms of k , \mathbf{a} and \mathbf{b} .
Give your answer in its simplest form.

.....
.....
.....
(4)

(b) Is MN parallel to OB ?
Give a reason for your answer.

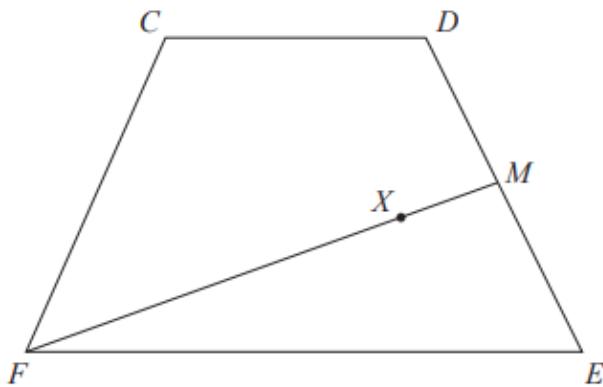
.....
.....
.....
(1)

19

$OABC$ is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OC} = \mathbf{c}$$

X is the midpoint of the line AC .


OCD is a straight line so that $OC : CD = k : 1$

$$\text{Given that } \overrightarrow{XD} = 3\mathbf{c} - \frac{1}{2}\mathbf{a}$$

find the value of k .

$$k = \dots$$

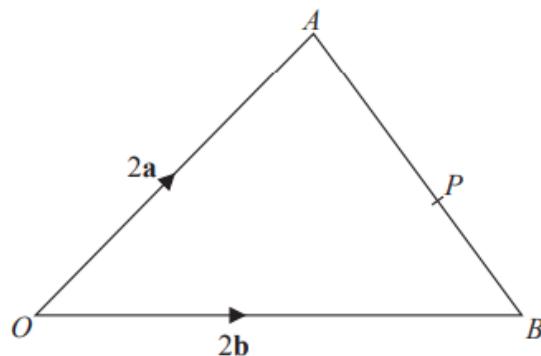
20 $CDEF$ is a quadrilateral.

$$\vec{CD} = \mathbf{a}, \vec{DE} = \mathbf{b} \text{ and } \vec{FC} = \mathbf{a} - \mathbf{b}.$$

(a) Express \vec{FE} in terms of \mathbf{a} and/or \mathbf{b} .
Give your answer in its simplest form.

(2)

M is the midpoint of DE .


X is the point on FM such that $FX:XM = n:1$

CXE is a straight line.

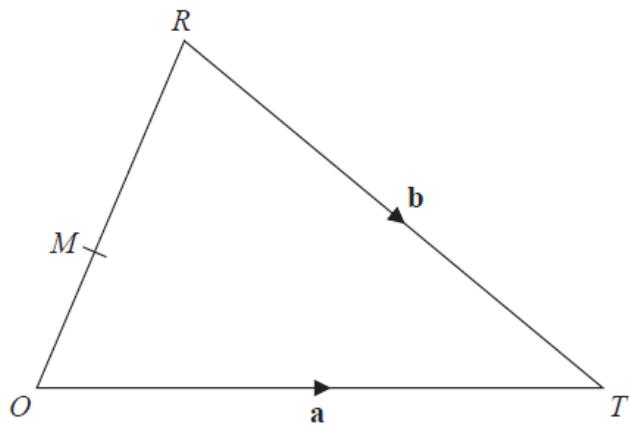
(b) Work out the value of n .

$n = \dots$ (4)

20

OAB is a triangle.

P is the point on AB such that $AP:PB = 5:3$

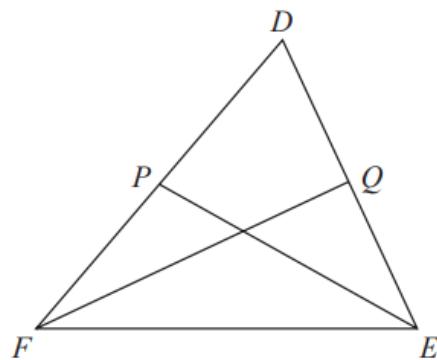

$$\overrightarrow{OA} = 2\mathbf{a}$$

$$\overrightarrow{OB} = 2\mathbf{b}$$

$$\overrightarrow{OP} = k(3\mathbf{a} + 5\mathbf{b}) \text{ where } k \text{ is a scalar quantity.}$$

Find the value of k .

20 ORT is a triangle.

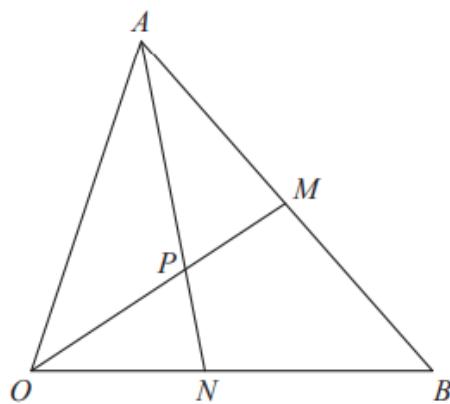

$$\overrightarrow{OT} = \mathbf{a} \quad \overrightarrow{RT} = \mathbf{b}$$

M is the point on OR such that $OM:MR = 2:3$

Express \overrightarrow{MT} in terms of \mathbf{a} and \mathbf{b} .

Give your answer in its simplest form.

21 DEF is a triangle.


P is the midpoint of FD .

Q is the midpoint of DE .

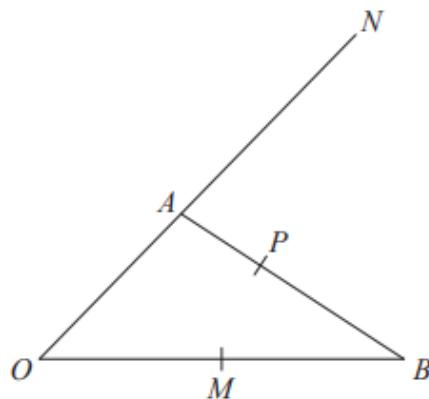
$$\vec{FD} = \mathbf{a} \text{ and } \vec{FE} = \mathbf{b}$$

Use a vector method to prove that PQ is parallel to FE .

21

OAB is a triangle.

OPM and APN are straight lines.


M is the midpoint of AB .

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

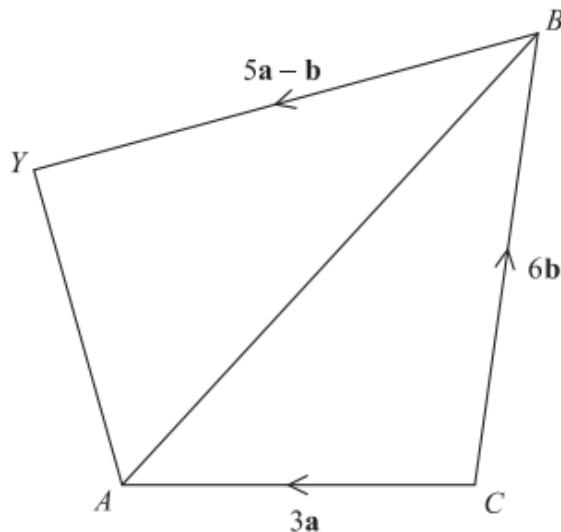
$$OP:PM = 3:2$$

Work out the ratio $ON:NB$

21

OAN , OMB and APB are straight lines.

$AN = 2OA$.


M is the midpoint of OB .

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

$$\overrightarrow{AP} = k\overrightarrow{AB} \text{ where } k \text{ is a scalar quantity.}$$

Given that MPN is a straight line, find the value of k .

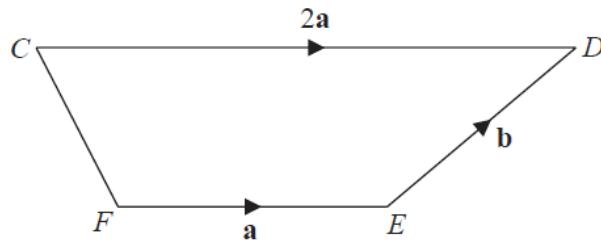
22

$CAYB$ is a quadrilateral.

$$\vec{CA} = 3\mathbf{a}$$

$$\vec{CB} = 6\mathbf{b}$$

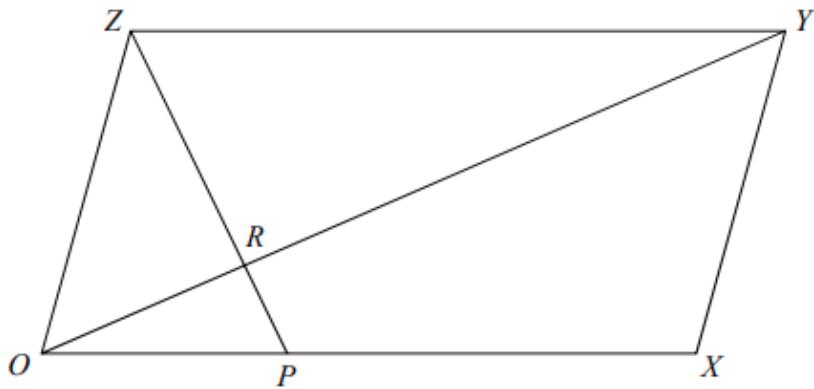
$$\vec{BY} = 5\mathbf{a} - \mathbf{b}$$


X is the point on AB such that $AX:XB = 1:2$

Prove that $\vec{CX} = \frac{2}{5} \vec{CY}$

22 Given that the vector $a\begin{pmatrix} 2 \\ 6 \end{pmatrix} + b\begin{pmatrix} 8 \\ 2 \end{pmatrix}$ is parallel to the vector $\begin{pmatrix} 13 \\ 6 \end{pmatrix}$
find an expression for b in terms of a .

24 $CDEF$ is a quadrilateral.



$$\vec{FE} = \mathbf{a} \quad \vec{ED} = \mathbf{b} \quad \vec{CD} = 2\mathbf{a}$$

The point P is such that CEP is a straight line and that $CE = EP$

Use a vector method to prove that CF is parallel to DP .

24 $OXYZ$ is a parallelogram.

$$\overrightarrow{OX} = \mathbf{a}$$

$$\overrightarrow{OY} = \mathbf{b}$$

P is the point on OX such that $OP:PX = 1:2$

R is the point on OY such that $OR:RY = 1:3$

Work out, in its simplest form, the ratio $ZP:ZR$

You must show all your working.